More Detail On Detail Rows Expressions In SSAS Tabular V.Next

My second-favourite feature in SSAS Tabular v.next after Power Query integration is the Detail Rows expression property for measures – it not only brings drillthrough on measures to Tabular, it means that we can define meaningful drillthrough on any measure, no matter how it is calculated. There’s a basic description of the functionality in this blog post but I thought it would be useful to walk through a simple example showing how it can be used.

Consider a simple SSAS Tabular model with two tables in it. First, a table containing sales data called Sales:

image

Second, a date table called Date:

image

[Note: dates are in DD/MM/YYYY format]

There are two measures with the following definitions:

Total Sales:=SUM(Sales[Sales])

Total YTD Sales:=TOTALYTD([Total Sales], 'Date'[Date])

The measure Total YTD Sales gives the running total of sales from the beginning of the current year. I know it doesn’t follow Marco and Alberto’s best-practice pattern but I wanted to keep things simple on the DAX front…

Browsing the model in an Excel PivotTable gives the following result:

image

At this point if you double-click on cell C6 in the PivotTable you get the following, not very useful result, on a new worksheet:

image

What drillthrough does in SSAS Multidimensional, and what the new Detail Rows Expression property in SSAS Tabular v.next does, is allow an end user to see the detail-level data (usually the rows in the fact table) that was aggregated to give the value the user clicked on in the original PivotTable.

For the Total Sales measure, this property can be set with a DAX expression that returns a table something like this:

SELECTCOLUMNS(
	'Sales', 
	"Date", 'Sales'[Date], 
	"Sales Value", [Total Sales]
)

[For more details on the SelectColumns() function, see here]

image

Now when you click on cell C6 in the PivotTable you get the result of the table expression above filtered by the context of the cell you’ve clicked on – in this case, the date 4/1/2017. What appears in the new worksheet is data from the row from the Sales table for 4/1/2017:

image

This is already better than SSAS Multidimensional drillthrough because as a developer you have control over the column headers displayed in this table (in Multidimensional drillthrough the column names come out in a ridiculously user-unfriendly format) and the order that they are displayed in (which is equally painful to control in Multidimensional).

Now, consider cell D6 in the PivotTable, the cell that shows the year-to-date sales amount for 4/1/2017. If a user double-clicked on this cell they would expect to see all of the rows from the Sales table from 1/1/2017 to 4/1/2017, the rows whose sales have been aggregate to give the YTD total.

This can be achieved using the following expression in the Detail Rows Expression for the Total YTD Sales measure:

CALCULATETABLE(
	SELECTCOLUMNS(
		'Sales', 
		"Date", 
		'Sales'[Date], 
		"Sales Value", 
		[Total Sales]
	), 
	DATESYTD('Date'[Date])
)

image

Now, double-clicking on cell D6 in the PivotTable gives the following table:

image

It may not look all that impressive, but there are few words that can describe how happy this makes me feel. This is exactly what is not possible with drillthrough in SSAS Multidimensional, and why drillthrough in Multidimensional has always been so frustrating to use. It’s great to see the feature properly implemented in Tabular.

First Thoughts On The Integration Of Power Query/M Into Analysis Services Tabular

Last Friday’s big news was the release of the first CTP for Analysis Services v.next. Among several major new pieces of functionality (Ragged hierarchies! Drillthrough that works properly, even for calculations! Table-level security!) probably the biggest is the integration of Power Query/M into Analysis Services. As you can probably guess, I’m incredibly pleased that my two favourite technologies have got together. The technical details are given in this blog post, which I suggest you read if you haven’t done so already, but what I think is missing is an explanation of why this is so important and what kind of opportunities it opens up – hence this post. Of course this is just my take on the subject and not what Microsoft may actually thinking; it’s also very early days, so as the functionality develops and I have more chance to think about this my opinions may change. If you have any ideas on this subject I would be interested to hear them so please leave a comment!

Why this had to happen: Power BI

There is an obvious reason why Microsoft decided to integrate Power Query/M into SSAS, and that is because it needs to support the conversion of Power BI models into Analysis Services Tabular models. There are two scenarios where this will be necessary.

The first is the ability to convert a Power BI model into an Azure Analysis Services Tabular model (listed as ‘planned’ here), something that will be a key selling point for Azure Analysis Services when it releases. The engine behind Power BI is essentially the same as the one used in Analysis Services so migrating the data model should be straightforward, but since Power BI uses Power Query/M to load data then a migrated Azure Analysis Services model will also have to use Power Query/M.

The second scenario is similar to the first. We now know that on-premises Power BI will be delivered through Reporting Services v.next, and it’s reasonable to assume Reporting Services will need a database engine to store the data for published Power BI reports. That engine will have to be an Analysis Services instance of some kind (either standalone or running in-process inside Reporting Services) and again for that to work Analysis Services will have to support the same data access mechanisms as Power BI.

Better support for a larger number of data sources

I’ve just argued why Microsoft was obliged to include this functionality in SSAS v.next but in fact there are many positive reasons for doing this too. The most obvious one is to do with support for more data sources. At the moment SSAS Tabular supports a pretty good range of data sources, but the world of BI is getting more and more diverse and in order to stay relevant SSAS needs to support far more than it does today. By using Power Query/M as its data access mechanism, SSAS v.next will immediately support a much larger number of data sources and this number is going to keep on growing: any investment that Microsoft or third parties make for Power BI in this area will also benefit SSAS. Also, because Power Query/M can query and fold to more than just relational databases, I suspect that in the future this will allow for DirectQuery connections to many of these non-relational data sources too.

Different data sources for partitions in the same table

Another benefit of this change is that we’ll have a lot more flexibility with partitioning tables in an SSAS Tabular model. As the blog post says:

As long as a partition’s M query adheres to the column mappings of the table, you are free to perform any transformations and pull in data from any data source defined in the model.

In SSAS 2016 the partitions in a table all have to get data from the same data source whereas in v.next we’ll be able to get data from different data sources in different partitions, and this opens up some interesting new possibilities. For example, I can imagine a simple budgeting application where the partitions in a table get data from different Excel workbooks stored in OneDrive for Business, and where the each partition gets processed automatically when changes are saved to one of these workbooks.

Does this replace SSIS and my data warehouse? 

The short answer is no. Power Query/M is not a full-featured ETL tool and I don’t think it ever will be; it certainly does not have the kind of functionality needed to perform enterprise-level ETL right now. My view is that Microsoft have built Power Query/M into SSAS for the reasons above and not to encourage enterprise SSAS users to do their own quick-and-dirty ETL when loading data (although there is a risk that that will happen anyway). That said, I think the dividing line between corporate and self-service BI will become increasingly blurred over the next few years as the Microsoft BI stack develops, and we’ll see Analysis Services being used in self-service scenarios as well as the more traditional corporate ones.

Centralised data source objects

One last thing to point out is that the way SSAS v.next makes a distinction between data sources and other queries is very interesting. In Power BI and Power Query it’s easy to end up with data source connection information duplicated across multiple queries unless you know what you’re doing, and this can cause no end of problems later on in a project. As far as I can see, in SSAS v.next a “data source object” is an M query that only contains the connection to external data, while all other queries have to reference a data source to be able to access external data. This means, as the blog post says:

Referring to data source objects helps to centralize data source settings for multiple queries and simplifies deployments and maintenance if data source definitions must be updated later on. When updating a data source definition, all M queries that refer to it automatically use the new settings.

I wonder whether this concept is coming to Power BI and Power Query at some point? I hope so – it makes a lot of sense.

Nested Variables In DAX

Last week, at the SQL Server Days conference in Belgium, Kasper mentioned in his presentation that it was possible to define variables inside variables in DAX. So, for example, you could define a measure like so:

MyMeasure = 
var Outer1 = 
               var Inner1 = 1
               var Inner2 = 2
               return Inner1 + Inner2
var Outer2 = 3
return Outer1 + Outer2

This measure returns 6 as you might expect:

image

There aren’t any performance benefits to doing this, although of course it helps with code readability and organisation (thanks to Marius for confirming this).

With my newly rekindled love of DAX I thought this was quite interesting. I’m not really sure why though, given that it’s not particularly useful; I think Matt might be right:

image

Defining Variables In DAX Queries

Variables are the best thing to happen to DAX since, well forever – they are so cool I’m almost ready to like DAX as much as I like MDX. There are already several good articles and blog posts out there describing how to use them (see here and here), but I was looking at a Profiler trace the other day and saw something I hadn’t yet realised about them: you can declare and use variables in the DEFINE clause of a DAX query. Since my series of posts on DAX queries still gets a fair amount of traffic, I thought it would be worth writing a brief post showing how this works.

Say you have the following table (called Sales) in your model:

image

You can declare DAX variables in the DEFINE clause of a query like so:

DEFINE
    VAR MyMonth = "January"
    VAR FilteredMonths =
        FILTER ( VALUES ( Sales[Month] ), Sales[Month] = MyMonth )
EVALUATE
CALCULATETABLE ( Sales, FilteredMonths )

This query returns the following result:

image

The benefits of using variables in this way are the same as you get when using variables in measures and calculated columns: improved readability, less repetition and potential performance improvements.

I also wondered whether I would be able to refer to these variables inside measures declared in the DEFINE clause, but unfortunately you can’t. The following query:

DEFINE
    VAR MyMonth = "January"
    VAR FilteredMonths =
        FILTER ( VALUES ( Sales[Month] ), Sales[Month] = MyMonth )
    MEASURE Sales[FirstMeasure] =
        COUNTROWS ( FilteredMonths )
EVALUATE
ROW ( "First Measure", [FirstMeasure] )

…returns the error

“Failed to resolve name ‘FilteredMonths’. It is not a valid table, variable or function name”.

However if you define your calculations inside the query itself, for example using the Summarize() or AddColumns() functions, or like so:

DEFINE
    VAR MyMonth = "January"
    VAR FilteredMonths =
        FILTER ( VALUES ( Sales[Month] ), Sales[Month] = MyMonth )
EVALUATE
ROW (
    "First Calc", COUNTROWS (FilteredMonths),
    "Second Calc", CALCULATE (SUM(Sales[Sales]), FilteredMonths)
)

…the query works:

image

In a lot of cases, multiple calculations contain some of the same logic and being able to use variables to share tables and values between calculations opens up some really interesting opportunities for performance optimisations.

Deprecated And Discontinued Functionality In SSAS 2016

Some time ago I blogged about the deprecated and discontinued functionality in SSAS 2014, so I thought it would be a good idea to follow my last post on what’s new in SSAS 2016 Multidimensional with a discussion of what’s going or gone from it.

The same page that I linked to last time has been updated for 2016, and there are four more subpages with all the details. There’s nothing much interesting to say about the breaking changes (basically AMO has been rejigged) or behaviour changes (there’s no in-place upgrade for Tabular models using DirectQuery – you have to open the project and edit some settings) but the other two pages do have some news worthy of comment:

Discontinued Functionality

Here’s the official definition of a discontinued feature:

A discontinued feature is one that is no longer supported. It might also be physically removed from the product.

A few comments about what is now discontinued:

  1. The Non_Empty_Behavior property for calculated measures. To be honest, I’m happy to see this go: it doesn’t usually make much difference to performance and in most cases people use it incorrectly too. It really should be removed from Form View in the SSDT cube editor.
  2. COM assemblies. Note that this is not the same thing as .NET assemblies like the Analysis Services Stored Procedure Project! If you are using a custom MDX function implemented in a COM assembly you will probably find that the equivalent function implemented in a .NET assembly is a lot slower, but in my experience it’s almost always possible to avoid custom functions completely and use pure MDX – and this will give you the best query performance.
  3. I’m a bit sad to see the CalculationCurrentPass() and CalculationPassValue() functions die because you could do cool things like this with them, but I haven’t actually needed to use them for a long, long time.

Deprecated Functionality

Here’s the official definition of a deprecated feature:

A deprecated feature is a feature will be cut from the product in a future release, but is still supported and included in the current release to maintain backward compatibility. Typically, a deprecated feature is removed in a major release, often within two releases of the original announcement. For example, deprecated features announced in SQL Server 2012 are likely to be unsupported by SQL Server 2016.

A few comments on what’s been deprecated:

  1. The only thing that someone may possibly be using on the list of features that will not be supported in the next major release is linked dimensions; remote partitions and remote linked dimensions were always a very bad idea.
  2. The death of dimension writeback (note: not the same thing as writing values back to cells) is a bit of a shame: I never needed to use it, and most client tools didn’t support it, but it always struck me as one of those features that people might have used more if they had known about it.
  3. I see session cubes (as used by Excel PivotTables’ grouping functionality) will not be supported in a future release, which is probably a good thing given all the problems they cause. However I bet there are a lot of Excel workbooks out there that will be affected when this does go.
  4. Local cubes will also go in a future release, though I doubt anyone uses them anymore. That said, I think it would be really useful if there was something similar that allows you to create a Power Pivot model that was a local copy of an SSAS Tabular database, with the option to filter the data in it. Offline access is not so important these days but this would allow users to create their own customised Power Pivot models from a properly designed, central model rather than always having to start from scratch.
  5. Profiler for trace capture is also deprecated, and I discussed this in-depth here.

 

Excel 2016 PivotTable MDX Changes Lead To Big Query Performance Gains

Yesterday, the Excel team announced a bunch of performance improvements in Excel 2016 for PivotTables connected to Analysis Services (Multidimensional or Tabular), Power Pivot and Power BI. If you haven’t read the official blog post already, here it is:

https://blogs.office.com/2016/07/07/faster-olap-pivottables-in-excel-2016/

In that post, Microsoft point out that how much of a performance increase you get will depend on a number of factors. I guess they have to do this to manage expectations. However I’m going to come right out and say that these changes are probably the most important thing that has happened in the last five years for Analysis Services or Power Pivot query performance and if you are using Excel PivotTables with SSAS or Power Pivot for reporting, you should upgrade to Excel 2016 (you’ll need the Office 365 click-to-run version) just for these changes.

The key improvement that Microsoft have made here is to stop Excel bringing back unnecessary subtotal values in the MDX queries that it generates. This has been a gigantic problem for years and several people have blogged about it: I did here, and among other people Rui Quintino and Richard Lees have posts on the subject that are worth reading. A lot of my consultancy work involves SSAS and MDX performance tuning and I think I see around five to ten customers every year who are seriously affected by this – and I’m sure this is just the tip of the iceberg. Even if you don’t think you are affected, you may have users who are putting up with slow refresh times for Excel-based reports without your knowledge.

Let’s go into some technical detail, see what the original problem was and what has changed in Excel 2016. I’m going to provide some examples using Excel 2013/2016 against SSAS Multidimensional but as I said the same problems occur (although less severely) with SSAS Tabular and Power Pivot.

Consider the following Excel 2013 PivotTable connected to the Adventure Works cube:

image

image

It’s typical of the kind of thing an end user wants to build, and there are two things to point out:

  1. Notice there are three fields that have been placed on the Rows axis of the PivotTable: the Gender and Marital Status hierarchies from the Customer dimension, and the Category hierarchy from the Product dimension. It’s pretty common for users to put many more fields together on an axis when they want to display detailed data.
  2. The user has also turned off grand totals and subtotals in the PivotTable so that only the detailed data is shown. This often happens in combination with (1) because if the user only wants to see the detailed data the subtotals and grand totals are a distraction.

In this case the PivotTable layout has been switched Tabular and the Repeat All Item Labels option is selected to make the PivotTable look like a table, but these are just aesthetic changes.

This PivotTable contains 12 rows, but if you look at the MDX query that is generated by Excel 2013 to populate it, it returns 36 rows of data (actually the MDX in this case returns 36 columns, but that’s a quirk of Excel) because the subtotals and grand total that Excel is not displaying are still being returned. Here’s the query:

SELECT 
NON EMPTY 
CrossJoin(
CrossJoin(
Hierarchize(
{DrilldownLevel(
{[Customer].[Gender].[All Customers]}
,,,INCLUDE_CALC_MEMBERS)}), 
Hierarchize(
{DrilldownLevel({[Customer].[Marital Status].[All Customers]}
,,,INCLUDE_CALC_MEMBERS)})), 
Hierarchize(
{DrilldownLevel({[Product].[Category].[All Products]}
,,,INCLUDE_CALC_MEMBERS)})) 
DIMENSION PROPERTIES PARENT_UNIQUE_NAME,HIERARCHY_UNIQUE_NAME 
ON COLUMNS  
FROM 
[Adventure Works] 
WHERE ([Measures].[Internet Sales Amount]) 
CELL PROPERTIES VALUE, FORMAT_STRING, 
LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

And here’s a sample of what it returns, with the unwanted values highlighted:

image

You can probably guess that these unwanted subtotals and grand totals make the query slower, and the more fields you put together on the rows or columns of a PivotTable the greater the number of subtotals/grand totals are returned and slower things get. PivotTables connected to SSAS or Power Pivot often become completely unusable with more than six or seven fields put together on the same axis, and the only workarounds before Excel 2016 are either to write custom MDX in a named set (I show how to do this here) or if you are using SSAS Multidimensional try to use member properties instead of separate fields (as Richard Lees shows here), but neither are really great alternatives.

Building the same PivotTable using Excel 2016, however, gives the following MDX:

SELECT 
NON EMPTY 
CrossJoin(
CrossJoin(
Hierarchize(
{[Customer].[Gender].[Gender].AllMembers}), 
Hierarchize(
{[Customer].[Marital Status].[Marital Status].AllMembers})), 
Hierarchize(
{[Product].[Category].[Category].AllMembers})) 
DIMENSION PROPERTIES PARENT_UNIQUE_NAME,HIERARCHY_UNIQUE_NAME 
ON COLUMNS  FROM [Adventure Works] 
WHERE ([Measures].[Internet Sales Amount]) 
CELL PROPERTIES VALUE, FORMAT_STRING, 
LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

Which returns just the data needed for the PivotTable:

image

What has changed? Focusing on just the Gender hierarchy, the difference between the two queries is that in Excel 2013 the selection on Gender is given using the DrillDownLevel() function on the All Member of the hierarchy. Isolated and put in its own query, the set expression used looks like this:

SELECT 
{[Measures].[Internet Sales Amount]}
ON COLUMNS,
DrilldownLevel(
{[Customer].[Gender].[All Customers]}
,,,INCLUDE_CALC_MEMBERS)
ON ROWS
FROM
[Adventure Works]

image

Notice how the All Member, used by Excel to return subtotals and grand totals, is returned by the set. Excel 2016 instead just asks for the members on the Gender level of the Gender hierarchy, not including the All Member. Again, put inside its own query, you can see what it returns:

SELECT 
{[Measures].[Internet Sales Amount]}
ON COLUMNS,
{[Customer].[Gender].[Gender].AllMembers}
ON ROWS
FROM
[Adventure Works]

image

Apart from the fact that no All Member is returned, it’s also a lot cleaner and easier to read.

I’ve been very excited about this change since I first heard it was happening, and I think it will benefit a lot of people. A big thanks to Alexander Lahuerta and the rest of the Excel team for making this happen!

First Look At SSAS 2016 MDX On DirectQuery

Following on from my last post covering DirectQuery in Power BI, I thought it might be interesting to take a look at the way MDX queries are supported in SSAS Tabular 2016 CTP3 DirectQuery mode.

There were a lot of limitations when using DirectQuery in SSAS Tabular 2012/4, but for me the showstopper was the fact that it only worked if you were running DAX queries against your model. Historically the only major client tool that generated DAX queries to get data was Power View, and Power View was/is too limited for serious use, so that alone meant that none of my customers were interested in using DirectQuery. Although we now have Power BI Desktop and PowerBI.com, which also generate DAX queries, the fact remains that the vast majority of business users will still prefer to use Excel PivotTables as their primary client tool – and Excel PivotTables generate MDX queries. So, support for MDX queries in DirectQuery mode in SSAS 2016 means that Excel users will now be able to query a Tabular model in DirectQuery mode. This, plus the performance improvements made to the SQL generated in DirectQuery mode, means that it’s now a feature worth considering in scenarios where you have too much data for SSAS Tabular’s native in-memory engine to handle or where you need to see real-time results.

At the time of writing the most recent release of SQL Server 2016 is CTP3. If you want to test out the BI features in SQL Server 2016 CTP3 in an Azure VM, I highly recommend Dan English’s blog post here showing how to set one up. To test DirectQuery mode you need to use the older 1103 compatibility mode for your project and not the latest 1200 compatibility mode. This is documented in the release notes:
https://msdn.microsoft.com/en-us/library/dn876712.aspx#bkmk_2016_ctp3_0

image

Once you’ve created your project, you can enable DirectQuery mode in the same way as in previous versions by following the instructions here. The DirectQueryMode property on Model.bim needs to be set to On, and the QueryMode property on the project should be set to DirectQuery.

For testing purposes I downloaded the 2016 version of the Adventure Works DW database and restored it to SQL Server, then created a SSAS Tabular model containing only the DimDate table to keep things simple. I created one measure in the model with the following definition:
TestMeasure:=COUNTROWS(‘DimDate’)

First of all, I ran the following MDX query:

SELECT
{[Measures].[TestMeasure]} 
ON 0,
[DimDate].[CalendarYear].[CalendarYear].MEMBERS 
ON 1
FROM
[Model]

image

Using a Profiler trace (yes, I know I should be using XEvents but Profiler is so much more convenient for SSAS) I could see the SQL generated by SSAS in the Direct Query Begin and Direct Query End events. For the MDX query above there were three SQL queries generated. The first looks like it is getting the list of years displayed on the Rows axis:

SELECT 
TOP (1000001) [t0].[CalendarYear] AS [c15]
FROM 
(
  (SELECT [dbo].[DimDate].* FROM [dbo].[DimDate])
)
AS [t0]
GROUP BY [t0].[CalendarYear] 

The second SQL query gets the measure value requested:

SELECT 
TOP (1000001) [t0].[CalendarYear] AS [c15],
COUNT_BIG(*)
AS [a0]
FROM 
(
  (SELECT [dbo].[DimDate].* FROM [dbo].[DimDate])
)
AS [t0]
GROUP BY [t0].[CalendarYear] 

The third is simply a repeat of the first query.

However, there’s one important thing to say here: there are going to be significant changes and improvements to the SQL generated before RTM, so don’t read too much into the queries shown here.

There are several limitations in CTP3 that may or may not remain at RTM. One that you may run into is the that you can only use fully qualified MDX unique names in your queries, so

[DimDate].[CalendarYear].&[2010]

…will work but

[2010]

…will not. To be honest, I consider it a best practice to use fully qualified unique names anyway so I’m not too bothered about this. Drillthrough doesn’t work at the moment either.

MDX calculations defined in the WITH clause of a query are supported, which is really useful if you’re writing custom MDX queries for SSRS. For example the following query works and generates the same SQL (though with a few more executions) as the previous query:

WITH
MEMBER [Measures].[TestMDXCalcMeasure] AS 
SUM(NULL:[DimDate].[CalendarYear].CURRENTMEMBER,
[Measures].[TestMeasure])

SELECT
{[Measures].[TestMeasure],
[Measures].[TestMDXCalcMeasure]} 
ON 0,
[DimDate].[CalendarYear].[CalendarYear].MEMBERS 
ON 1
FROM
[Model]

image

All in all, this looks like a solid piece of work by the SSAS dev team. Go and test it! I would love to hear from anyone with genuinely large amounts of data (maybe APS/PDW users?) regarding their experiences with 2016 DirectQuery. Recently I’ve been working with a customer using SSAS Multidimensional in ROLAP mode on top of Exasol and I’ve been surprised at how well it works; I would imagine that 2016 DirectQuery and APS would be an even better combination.

One last thought. If we get the ability to query a cloud-based Power BI mode with MDX and MDX on DirectQuery is supported in Power BI too, why would you bother paying for an expensive SQL Server Enterprise/BI Edition licence plus hardware to use DirectQuery when you can get almost the same functionality in the cloud for a fraction of the price?