The CredentialQuery Option For Web.Contents() In Power BI Custom Data Connectors

There’s a new, as yet undocumented, option for the Web.Contents() M function that is only available for custom data connectors and not in Power BI Desktop: CredentialQueryOption. It does the same thing as the Query option, but it stops the values you are passing to the query parameter from being logged in Power BI’s diagnostic logs, so it’s useful if you are passing sensitive information such as passwords.

For example, consider the following call to Web.Contents() used in a custom data connector:

Web.Contents(
 "https://data.gov.uk/api", 
 [RelativePath="3/action/package_search", 
 Query=[q="cows"]
]
)

When the custom data connector is used in Power BI Desktop, if diagnostic logging is turned on in the Options dialog:

image

…then, if you look in the log files you’ll see the entire url called including the search term “cows”:

image

However, if you change the M code to:

Web.Contents(
 "https://data.gov.uk/api", 
 [RelativePath="3/action/package_search", 
 CredentialQuery=[q="cows"]
]
)

So that the CredentialQuery option is used instead of the Query option, the search term will not appear in the log file.

Thanks to Curt Hagenlocher for providing this information.

Web.Contents(), Caching And The ExcludedFromCacheKey Option In Power BI And Power Query

When you’re using the Web.Contents() M function to call a web service from Power Query or Power BI, you don’t necessarily get one HTTP request each time you call the function: some caching takes place, so that if you make the same request multiple times your query won’t waste time asking for the same data over and over. In this post I’m going to share the results of some tests I made to show how caching works with Web.Contents() and what factors influence it.

For my tests I built a simple web service in Microsoft Flow, similar to the one I blogged about here, that accepts a HTTP POST request and calls a stored procedure in an Azure SQL Database. The stored procedure then updates a table in the database and this in turn allows me to count the number of times the web service is called. Finally, the web service returns the value 0 if the stored procedure has executed successfully.

This web service can then be called from either Power Query or Power BI using the Web.Contents() function, something like this (because the URL for the web service is very long I stored it in a parameter called WebServiceURL):

let
    Source = Web.Contents(
	WebServiceURL,
	[Content=Text.ToBinary("Hello")]
	),
    #"Imported JSON" = Json.Document(Source,1252)
in
    #"Imported JSON"

The output of the query when run in Power Query and loaded to an Excel table is this:

image

The first important thing to point out is that the above query, when refreshed in the latest versions of Power Query (I’m running Excel 2016 build 7571.2109) and Power BI (build 2.41.4581.361- November 2016 release), results in a single call to the web service. It might seem like I’m stating the obvious but in the past I’ve seen plenty of cases where a data source has been queried multiple times by Power Query/Power BI even if I was only expecting it to be queried once.

Now, let’s look at a query that calls this web service several times. Here’s the query above converted to a function called fnCallWebService:

() => 
let
    Source = Web.Contents(
	WebServiceURL,
	[Content=Text.ToBinary("Hello")]),
    #"Imported JSON" = Json.Document(Source,1252)
in
    #"Imported JSON"

Here’s a query that calls this function once for each row of the following table:

image

let
    Source = Excel.CurrentWorkbook(){[Name="MyTable"]}[Content],
    #"Changed Type" = Table.TransformColumnTypes(
	Source,
	{{"Row", Int64.Type}}),
    #"Invoked Custom Function" = Table.AddColumn(
	#"Changed Type", 
	"fnCallWebService", 
	each fnCallWebService())
in
    #"Invoked Custom Function"

In the query above I used the Invoke Custom Function button to call the function for each row in the source table and put the value returned by the function in a new column. The output is this:

image

Even though the function is called four times, once for each row in the original table, that does not mean that the web service is called four times – it isn’t, it’s only called once. In this case Power BI/Power Query knows that each of the four calls to the function is making an identical request to the web service and so it only goes to the web service once, and thereafter uses a cached result the other three times.

One way to stop this caching from taking place is to add an HTTP header to the request to the web service and pass a different value to that header for each call. Here’s another version of my function, now called fnCallWebServiceWithHeaders, which this time takes a number as a parameter and then passes that number to the web service via a header called MyHeader:

(RowNum as number) => let
    Source = Web.Contents(
	WebServiceURL,
	[Content=Text.ToBinary("Hello"), 
	Headers=[MyHeader=Text.From(RowNum)]]),
    #"Imported JSON" = Json.Document(Source,1252)
in
    #"Imported JSON"

Now if I call this function for each row of the table, and for each call pass the value in the [Row] column through to the function like so:

image

let
    Source = Excel.CurrentWorkbook(){[Name="MyTable"]}[Content],
    #"Changed Type" = Table.TransformColumnTypes(
	Source,
	{{"Row", Int64.Type}}),
    #"Invoked Custom Function" = Table.AddColumn(
	#"Changed Type", 
	"fnCallWebServiceWithHeaders", 
	each fnCallWebServiceWithHeaders([Row]))
in
    #"Invoked Custom Function"

…the web service gets hit four times. The presence of a different value for the MyHeader header in each request is enough to prevent any caching from taking place.

It is possible, however, to get Power BI/Power Query to ignore one or more headers when working out whether caching should take place using the ExcludedFromCacheKey option in Web.Contents(). Here’s one more version of my function, now called fnCallWebServiceWithHeadersExlCache, which uses this option:

(RowNum as number) => 
let
    Source = Web.Contents(
	WebServiceURL,
	[Content=Text.ToBinary("Hello"), 
	Headers=[MyHeader=Text.From(RowNum)], 
	ExcludedFromCacheKey={"MyHeader"}]),
    #"Imported JSON" = Json.Document(Source,1252)
in
    #"Imported JSON"

The ExcludedFromCacheKey option takes a list of text values which represent the names of headers that are to be ignored when considering which requests can be cached. In the example above my list contains just the one header, MyHeader, and when this is used in a query like so:

let
    Source = Excel.CurrentWorkbook(){[Name="MyTable"]}[Content],
    #"Changed Type" = Table.TransformColumnTypes(
	Source,
	{{"Row", Int64.Type}}),
    #"Invoked Custom Function" = Table.AddColumn(
	#"Changed Type", 
	"fnCallWebServiceWithHeaders", 
	each fnCallWebServiceWithHeadersExlCache([Row]))
in
    #"Invoked Custom Function"

…even though the function is called four times, once for each row in the table, and even though each time Web.Contents() is called it is with a different value passed through to the MyHeader header, only one request is made to the web service and the three subsequent requests are answered from cache again.

In summary, if you’re calling a web service multiple times in a query and especially if you’re using the Headers option in Web.Contents(), this is important stuff to understand because caching can make a big difference to the performance of your queries.

Web.Contents(), M Functions And Dataset Refresh Errors In Power BI

One slightly frustrating feature of Power BI is that some of the cool stuff you can do in M code for loading data, and which works in Power BI Desktop (and in Power Query), causes errors when you try to refresh your dataset after it has been published to PowerBI.com. I recently learned some interesting tricks for working around these problems when you are using Web.Contents() and M custom functions, which I thought deserved a wider audience and which are the subject of this post; thanks are due to Curt Hagenlocher of Microsoft and Idan Cohen for sharing this information.

First of all, I recommend you read my previous post on using the RelativePath and Query options with Web.Contents() to get some background, not just on the M functionality I’ll be using but also on the web service I’ll be using in my examples.

Let’s look at an example of where the problem occurs. The following M query uses a function to call the UK government’s open data metadata search API multiple times and then return a result into a table:

let
    Terms = 
      #table(
       {"Term"},
       {{"apples"}, {"oranges"}, {"pears"}}
       ),
    SearchSuccessful = (Term) => 
    let
        Source = 
         Json.Document(
           Web.Contents(
             "https://data.gov.uk/api/3/action/package_search?q=" 
             & Term
            )
           ),
        Success = Source[success]
    in
        Success,
    Output = 
     Table.AddColumn(
       Terms, 
       "Search Successful", 
       each SearchSuccessful([Term])
      )
in
    Output

Here’s the output:

image

This is just a variation on the widely-used M pattern for using functions to iterate over and combine data from multiple data sources; Matt Masson has a good blog describing this pattern here. In this case I’m doing the following:

  • Defining a table using #table() with three rows containing three search terms.
  • Defining a function that calls the metadata API. It takes one parameter, a search term, and returns a value indicating whether the search was successful or not from the JSON document returned. What the API actually returns isn’t relevant here, though, just the fact that I’m calling it. Note the highlighted lines in the code above that show how I’m constructing the URL passed to Web.Contents() by simply concatenating the base URL with the string passed in via the custom function’s Term parameter.
  • Adding a custom column to the table returned by the first step, and calling the function defined in the second step using the search term given in each row.

This query refreshes with no problems in Power BI Desktop. However, when you publish a report that uses this code to PowerBI.com and try to refresh the dataset, you’ll see that refresh fails and returns a rather unhelpful error message:

Data source error Unable to refresh the model (id=1264553) because it references an unsupported data source.

image

image

The problem is that when a published dataset is refreshed, Power BI does some static analysis on the code to determine what the data sources for the dataset are and whether the supplied credentials are correct. Unfortunately in some cases, such as when the definition of a data source depends on the parameters from a custom M function, that static analysis fails and therefore the dataset does not refresh.

The good news is that when, as in this case, the data source is a call to Web.Contents() then Power BI only checks the base url passed into the first parameter during static analysis – and as my previous blog post shows, by using the RelativePath and Query options with Web.Contents() you can leave the value passed to the first parameter as a static string. Therefore, the following version of the query does refresh successfully in Power BI:

let
    Terms = 
      #table(
       {"Term"},
       {{"apples"}, {"oranges"}, {"pears"}}
       ),
    SearchSuccessful = (Term) => 
    let
        Source = 
         Json.Document(
           Web.Contents(
             "https://data.gov.uk/api/3/action/package_search", 
             [Query=[q=Term]]
            )
           ),
        Success = Source[success]
    in
        Success,
    Output = 
     Table.AddColumn(
       Terms, 
       "Search Successful", 
       each SearchSuccessful([Term])
      )
in
    Output

This technique will only work if the url passed to the first parameter of Web.Contents() is valid in itself, is accessible and does not return an error. But what if it isn’t? Luckily there’s another trick you can play: when you specify the Query option it can override parts of the url supplied in the first parameter. For example, take the following expression:

Web.Contents(
 "https://data.gov.uk/api/3/action/package_search?q=apples", 
 [Query=[q="oranges"]]
)

When static analysis is carried out before dataset refresh, the url

https://data.gov.uk/api/3/action/package_search?q=apples

..is evaluated. However when the dataset is actually refreshed, the search term in the Query option overrides the search term in the base url, so that the call to the web service that is actually made and whose data is used by the query is:

https://data.gov.uk/api/3/action/package_search?q=oranges

This means you can specify a base url that isn’t really just a base url just so that static analysis succeeds, and then use the Query option to construct the url you really want to use.

Of course this is all a bit of a hack and I’m sure, eventually, we’ll get to the point where any M code that works in Power BI Desktop and/or Power Query works in a published report. However it doesn’t sound as though this will be happening in the near future so it’s good to know how to work around this problem. I wonder whether there are other, similar tricks you can play with functions that access data sources apart from Web.Contents()? I need to do some testing…

Using The RelativePath And Query Options With Web.Contents() In Power Query And Power BI M Code

The Web.Contents() function in M is the key to getting data from web pages and web services, and has a number of useful – but badly documented – options that make it easier to construct urls for your web service calls.

Consider the following url:

https://data.gov.uk/api/3/action/package_search?q=cows

It is a call to the metadata api (documentation here) for https://data.gov.uk/, the UK government’s open data portal, and returns a JSON document listing all the datasets found for a search on the keyword “cows”. You can make this call using Web.Contents() quite easily like so:

Web.Contents(
 "https://data.gov.uk/api/3/action/package_search?q=cows"
)

However, instead of having one long string for your url (which will probably need to be constructed in a separate step) you can use the RelativePath and Query options with Web.Contents(). They are given in the second parameter of the function and passed through as fields in a record. RelativePath adds some extra text to the base url given in the first parameter for the function, while Query allows you to add query parameters to the url, and is itself a record.

So, taking the example above, if the base url for the api is https://data.gov.uk/api we can use these options like so:

Web.Contents(
 "https://data.gov.uk/api", 
 [
  RelativePath="3/action/package_search", 
  Query=[q="cows"]
 ]
)

RelativePath is just the string “3/action/package_search” and is added to the base url. There is just one query parameter “q”, the search query, and the search term is “cows”, so Query takes a record with one field: [q=”cows”]. If you want to specify multiple query parameters you just need to add more fields to the Query record; for example:

Web.Contents(
	"https://data.gov.uk/api", 
	[
		RelativePath="3/action/package_search", 
		Query=
		[
			q="cows", 
			rows="20"
		]
	]
)

Generates a call that returns 20 results, rather than the default 10:

https://data.gov.uk/api/3/action/package_search?q=cows&rows=20

Obviously these options make it easier to construct urls and the code is much clearer, but there are also other benefits to using these options which I’ll cover in another blog post soon.

Note: at the time of writing there is a bug that causes the value given in RelativePath to be appended twice when the Web.Page() function is also used. Hopefully this will be fixed soon.

Handling 404–Not Found Errors With Web.Contents() In Power Query And Power BI

One strange feature of the Web.Contents() function in Power Query and Power BI is that it doesn’t respond in a consistent way to the standard error handling techniques used in M. I don’t know if this is a bug or a feature, but it’s certainly something I’ve run into a few times so I thought I would share a description of the problem and a way of working around it.

First of all, what’s the problem? Imagine that you wanted to import a list of training courses from that fine UK Microsoft BI and SQL Server training company Technitrain into Power Query or Power BI. You could do so using an M query that uses the Web.Contents() function to get the course RSS feed, like so:

let
    Source = Web.Contents("http://technitrain.com/feed/")
in
    Source

 

But what happens if you get the URL wrong, or there’s some other problem with the site? For example, the following URL will give a 404 – Not Found error because the page doesn’t exist:

http://technitrain.com/blahblah

If you use it in an M query, like so:

let
    Source = Web.Contents("http://technitrain.com/blahblah")
in
    Source

Unsurprisingly you get an error:

DataSource.Error: Web.Contents failed to get contents from ‘http://technitrain.com/blahblah’ (404): Not Found

image

The real issue is, though, when you attempt to handle this error with a try/otherwise statement like so:

let
    Source = try 
                Web.Contents("http://technitrain.com/blahblah") 
             otherwise 
                "Error!"
in
    Source

…it doesn’t work and you get the same error! What’s strange is that in some cases a try/otherwise block in more complex code will work, so for example in:

let
    Source = try 
                Xml.Tables(
                 Web.Contents("http://technitrain.com/blahblah")
                )
             otherwise 
                "Error!"
in
    Source

… the error does get caught:

image

This thread on the Power Query forum suggests it’s something to do with lazy evaluation, but I haven’t been able to determine the situations when it does work and when it doesn’t.

Instead, it is possible to handle specific HTTP error codes using the ManualStatusHandling option in Web.Contents():

let
    Source = Web.Contents(
    	"http://technitrain.com/blahblah",
    	[ManualStatusHandling={404}])
in
    Source

The ManualStatusHandling option takes a list of numeric HTTP error codes, and if you run the above example you’ll see that the query no longer returns an error.

The next problem is, then, how do you know whether the request worked or not? It turns out that you can find out by looking at the metadata associated with the Source variable (for some background on getting metadata values see this post). So, for example, using Value.Metadata() on the Source variable like so:

let
    Source = Web.Contents(
    	"http://technitrain.com/blahblah",
    	[ManualStatusHandling={404}]),
    GetMetadata = Value.Metadata(Source)
in
    GetMetadata

Returns a record which, among other things, contains the HTTP response code:

image

Therefore you can use something like the following pattern to trap 404 errors:

let
    Source = Web.Contents(
        "http://technitrain.com/blahblah",
        [ManualStatusHandling={404}]),
    GetMetadata = Value.Metadata(Source),
    GetResponseStatus = GetMetadata[Response.Status],
    Output = if GetResponseStatus=404 then "Error!" else Source
in
    Output

Using OpenApi.Document() To Create A Power BI Custom Connector For The Power BI REST API

The idea of creating a Power BI custom connector for the Power BI REST API is not a new one: Miguel Escobar wrote one earlier this year (see here for the source code and documentation). However the Power BI REST API has a lot of endpoints so writing code to support them all would be extremely time-consuming, and there is another option: using the new OpenApi.Document() M function – only available for custom connectors, and not in Power BI Desktop or Excel – to read the API definition from an Open API (aka Swagger) definition file.

Full documentation and samples for using OpenApi.Document are available here, and an Open API definition file for the Power BI REST API is available here. The Power BI REST API uses Azure Active Directory authentication and handling AAD authentication in custom connectors is well documented here; Miguel’s sample shows how to adapt this code for Power BI.

After that, just download the Power BI REST API definition, save it as a .json file and add it to your Visual Studio custom connector project and set the Build Action property of the file to Compile:

image

You can then use the Extension.Contents() M function to read the contents of the file in code and pass that to OpenApi.Document(). The last problem to solve is that OpenApi.Document() only supports basic and anonymous authentication by default, so support for OAuth2 has to be handled using the ManualCredentials option. Here’s the M function definition from my demo project showing how to do this:

[DataSource.Kind="OAuth2Demo", Publish="OAuth2Demo.Publish"]
shared OAuth2.OpenAPIDemo = () =>
    let
        OAuthCredential = Extension.CurrentCredential(),
        OAuthToken = OAuthCredential[access_token],        
        SecurityHeaders = [ Authorization = "Bearer " & OAuthToken],
        PBISwagger = Extension.Contents("PBISwagger.json"),
        CallWebService = 
 	 OpenApi.Document(
	  PBISwagger,
	  [ Headers = SecurityHeaders, ManualCredentials = true ]
	 )
    in
        CallWebService;

Once you build your custom connector, you see all of the endpoints (or at least those that support GET and POST requests) exposed as functions in the Navigation table:

image

It looks super-easy to build a custom connector this way, but is it a actually good idea? I can see a few pros and cons:

  • As you’ll find if you try this, not everything ‘just works’ – there are a few functions that return errors.
  • In this case I embedded the Open API definition file in the project but it’s also possible to download it dynamically using Web.Contents(). This means that whenever the published Open API definition file is updated the custom connector also updates automatically. Are you sure the published Open API definition file will get updated when the API changes, though? What if it doesn’t, or there is an error in it?
  • Connecting to an API is all very well but it’s very important that a custom connector delivers data in a format that is modelled appropriately for Power BI, and very few APIs do this on their own. Pretty much every custom connector I have built has a lot of code in it to transform the data output by the API into something like a star schema, and the need to do this cancels out all the magic automatic stuff that OpenApi.Document() does for you.

Removing Punctuation From Text With The Text.Select M Function In Power BI/Power Query/Excel Get&Transform

A new, as-yet undocumented, M function appeared in the December 2017 release of Power BI Desktop (I assume it will appear in Excel soon): Text.Select. Here’s the documentation from the Query Editor:

 TextSelect

It’s very easy to use: the first parameter takes a text value, the second parameter takes either a text value containing a single text value or a list of single characters, and it returns the text from the first parameter minus all characters that are not in the second parameter. For example, the expression:

Text.Select("Hello", "l")

…returns the text value “ll”:

image

…and the expression:

Text.Select("Hello", {"H","e","o"})

…returns the text value “Heo”:

image

There are a lot of scenarios where Text.Select will be useful, and the one that I immediately thought of was to remove punctuation from text. In one of my earliest M posts on this blog I used Text.Remove to do this while trying to find Shakespeare’s favourite words, but the problem with this approach is that you have to explicitly specify all the characters you want to remove from your text – and there could be a lot of characters that need to be excluded. Text.Select is a much better option here because it allows you to specify the characters you want to keep.

The first step to doing this is to understand how to construct the list of the characters you do want to keep. You can do this very easily in M when declaring a list using the range technique I blogged about here, so you should read that post before carrying on. The following expression returns a list containing all 26 uppercase and lowercase letters in the alphabet plus a space:

List.Combine({{"A".."Z"},{"a".."z"},{" "}})

image

Of course depending on the scenario or language you’re working with you may want to include other characters, for example apostrophes or letters with accents, too. Here’s a slightly more complex example of how this list can be used with Text.Select:

let
    SourceText = "Hi! Stop, please. What is your name?",
    CharsToInclude = List.Combine({{"A".."Z"},{"a".."z"},{" "}}),
    RemovePunc = Text.Select(SourceText, CharsToInclude)
in
    RemovePunc

The query above takes the text “Hi! Stop, please. What is your name?” and returns the text “Hi Stop please What is your name”.

image

Finally, because I couldn’t read my old M code without cringing a little bit, here’s an updated version of my query that gets the top 100 words from the Complete Works Of Shakespeare (direct from the Project Gutenberg website):

let
  URL = "http://www.gutenberg.org/cache/epub/100/pg100.txt",
  Source = Text.FromBinary(Web.Contents(URL)),
  Lowercase = Text.Lower(Source),
  RemovePunctuation = Text.Select(Lowercase, 
	List.Combine({{"a".."z"},{" "}})),
  SplitText = Splitter.SplitTextByWhitespace(QuoteStyle.None),
  SplitIntoWords = SplitText(RemovePunctuation),
  RemoveBlanks = List.Select(SplitIntoWords, each _<>" "),
  TableFromList = Table.FromColumns({RemoveBlanks},
	type table [Word=text]),
  FindWordCounts = Table.Group(
	TableFromList, 
		{"Word"}, 
		{{"Count", each Table.RowCount(_), type number}}),
  SortedRows = Table.Sort(
	FindWordCounts,
	{{"Count", Order.Descending}}),
  KeptFirstRows = Table.FirstN(SortedRows,100)
in 
  KeptFirstRows

Here they are as a word cloud (yes I know it’s not good dataviz practice, but it’s for fun):

image

You can download the .pbix file with this example in here.

BONUS FACT: another new M function appeared recently too: Function.From. You can read all about it on this thread on the Power Query forum.

Data Privacy Settings In Power BI/Power Query, Part 2: Preventing Query Execution

In part 1 of this series I showed how the data privacy settings in Excel Power Query/Get & Transform and Power BI could impact the performance of your queries. In this post I’m going to show you how they can stop a query from running at all.

Let’s say you have the Excel workbook from part 1 of this series, but now instead of using the day name to filter data from a SQL Server table you want to pass that value to a web service. The web service I’m going to use for my examples is one that allows you to search for open data published by the UK government on https://data.gov.uk. It’s very simple: you give it a search term and it returns a JSON document with the search results in, no authentication or anything else required. For example:

https://data.gov.uk/api/3/action/package_search?q=Friday

In fact it doesn’t really matter what it does, just know that it is a web service that I can pass a text parameter to and get a result from.

Here’s a query that reads a single piece of text from the FilterDay table in my Excel workbook:

image_thumb2

…and then passes that value to the web service:

let
    ExcelSource = 
	Excel.Workbook(
		File.Contents("C:\FilterParameter.xlsx")
	, null, true),
    FilterDay_Table = 
	ExcelSource{[Item="FilterDay",Kind="Table"]}[Data],
    ChangedType = 
	Table.TransformColumnTypes(
		FilterDay_Table,
		{{"Parameter", type text}}
		),
    Day = ChangedType{0}[#"Parameter"],
    Output = 
	Web.Contents(
		"https://data.gov.uk/api/3/action/package_search", 
		[Query=[q=Day]]
	),
    ImportedJSON = Json.Document(Output,65001)
in
    ImportedJSON 

This query succeeds if any of the following conditions are true:

  • The data privacy levels of both the Excel workbook and the web service are set to Public
  • The data privacy levels of both the Excel workbook and the web service are set to Organizational
  • The data privacy level of the Excel workbook is set to None and the data privacy level of the web service is set to Public

[See here to find out how to set privacy levels for a data source. Interestingly the data privacy level of the web service cannot be set to None for this query – the UI always prompts for it to be set before the query will run]

Here’s the output of a successful run:

image

Any other combinations of data privacy settings, for example if both the Excel workbook and the web service are set to Private, result in the following error message:

Formula.Firewall: Query ‘WebFunctionSucceeds’ (step ‘ImportedJSON’) is accessing data sources that have privacy levels which cannot be used together. Please rebuild this data combination.

image

While it’s ok to send data from one Public data source to another Public data source, or from one Organizational data source to another Organizational data source, you cannot send data from one Private data source to any other data source, or even send data from a Public data source to a Private data source.

In the example in my previous post when the engine found it wasn’t allowed to send data from one source to another because of the data privacy rules used it was still able to run the query, but had to do so in a less efficient way. In this example there is no way to run this query without sending data from the Excel workbook to the web service – you can’t call this web service without sending a search term to it. As a result, if incompatible data privacy levels are set then the query returns the error shown.

Notice that in the query above I’m reading data from Excel and sending it to the web service in a single M query. This is deliberate! In the next post in this series I’ll be looking at examples where the engine can’t work out what it’s supposed to do and errors, even if the privacy levels used suggest the query should run.

Using Text.BetweenDelimiters() To Extract URLs From A Web Page In Power BI/Power Query M

The Add Column By Example functionality that appeared in the April 2017 release of Power BI Desktop is, I have to say, very cool: I’ve used it quite a bit in the last few weeks and it really does work well. One thing I noticed while using it is that three new functions have been added to the M language to support this feature:

  • Text.BetweenDelimiters() which takes a text value and extracts the part that appears between two given delimiter values
  • Text.BeforeDelimiter() which takes a text value and extracts the part that appears before a given delimiter value
  • Text.AfterDelimiter() which takes a text value and extracts the part that appears after a given delimiter value

The functions themselves are quite straightforward and the online documentation has some good examples of how to use them. To save you the click here’s an extra example – the expression:

Text.BetweenDelimiters("Hello *world!??", "*", "!")

…returns the text “world”:

image

As it happens last week I received an email from a reader who wanted to know if it was possible to extract all the links from the href attributes in the source of a web page using M, and I realised that Text.BetweenDelimiters() would be very useful for doing this. I wrote the following M function to demonstrate:

(SourceURL as text, AttributeDelimiter as text) =>
let
	//Get HTML source
    Source = Text.FromBinary(Web.Contents(SourceURL)),
	//Function to find each link
    GetLink = (Counter as number) =>
                    let
                        CurrentLink = 
		Text.BetweenDelimiters(
			Source, 
			"href=" & AttributeDelimiter, 
			AttributeDelimiter,
			Counter
		)
                    in
                        if CurrentLink="" 
		then 
			{} 
		else 
			List.Combine({
				{CurrentLink}, 
				@GetLink(Counter+1)}
			),
	//Call function
    Output = GetLink(0)
in
    Output

A few things to note:

  • I’m using a combination of Text.FromBinary() and Web.Contents() to get the HTML source for the web page whose links we’re extracting
  • Since HTML allows the use of single and double quotes for attributes, I’ve added a parameter to my function called AttributeDelimiter to allow either to be passed in
  • Text.BetweenDelimiters only extracts one piece of text at a time, but you can specify which occurrence of the start delimiter it uses. I therefore used recursion to extract the contents of every href attribute in the HTML: I declare a function called GetLink, and from within that function I can make a recursive call by putting an @ before the function name as in line 22 above. It would probably be better to use List.Generate() instead of recursion here though.

Assuming the query that returns this function is called GetAllLinks

image

…then it can be called in a new query like so:

GetAllLinks(
	"https://msdn.microsoft.com/en-us/library/mt798303.aspx", 
	""""
)

One other thing to point out is how, in order to pass a double quote character to the function as text, since text has itself to be enclosed in double quotes I need to use four double quotes: “”””

The output of this query is a list containing all of the links from the href attributes on the page that are enclosed in double quotes:

image

I guess this could be taken even further to create a function that crawls a series of web pages and returns the links in all of them, then uses the Force Directed Graph custom visual or better still NodeXL in Excel to show which pages link to each other. I’ll leave that to someone else to do though…!

You can download a pbix file with all of the examples in this post here.

Calling Microsoft Flow From Power Query And Power BI

Since last week’s blog post caused quite a lot of interest, here’s something similar: did you know you can trigger a Flow in Microsoft Flow and get a response from it back using Power Query/Power BI?

To start off, I suggest you read this post by Irina Gorbach which shows how a Flow can be triggered by a call to a REST API. Now consider the following Flow which is similar to the one in that post:

image

It has a Request trigger:

image

…a Translate text step as the second step, that takes the text passed in to the Request trigger through the request body and passes it to the Microsoft Translator API where it is translated from English to French:

image

…and then, finally, returns the translated text back using a Response step:

image

 

It’s very easy to call this Flow from Power Query or Power BI. First, create two parameters in the Query Editor: one called TextToTranslate that contains the text you want to translate from English to French (in this case, “What time is it?”)

image

…and another called FlowURL which is the URL copied from the Request trigger of the Flow

image

Then all you need to do is to call the Flow using a query that makes a POST request to the Request trigger:

let
    Source = Web.Contents(FlowURL,
                [Content=Text.ToBinary(TextToTranslate)]),
    GetText = Text.FromBinary(Source)
in
    GetText

And voilà, your query will pass the text in the TextToTranslate parameter to the Flow and return the translated text:

image

So basically, in this case I’ve used Flow to create a web service without writing a single line of code. I can see a lot of potential uses for this and I suspect I’ll be blogging about Flow a lot in the future. A word of warning though: do not try to use this as a way of updating a data source. As I mentioned last time, when you run your query you’ll find Power Query/Power BI calls the web service twice. For example, I created a Flow similar to the one above that used the Insert Row step to take text sent to a Request trigger and add it to a table in an Excel workbook, and of course every time I refreshed my query I got two identical rows in my Excel table.

%d bloggers like this: